Varying Optical Frequency Shifter

Group B

Marcus Darby - EE

Kevin Gaj - EE / Photonics

Samuel Nunez - Photonics

Caleb Stephan - Photonics

Motivation

- Communications systems are moving towards photonic approaches
- Many benefits over traditional electronic solutions
- Larger frequency bandwidth means higher data rates
- Optical components have lower SWaP penalty
- Variable optical delays are an important photonics processing tool

Goals and Objectives

- Rapidly swept and very precise optical delay as required by sponsor
- Achieve frequency shifts that will generate these delays
- Unique electronics design will function alongside photonics components to achieve delays

Specifications

Design Parameter	Target	Description/Notes	
Max Delay Range	1-2 ns	This sets the total maximum path length of the system	
Intrinsic Delay	1 ns (more if necessary)	Shortest possible delay through the entire system	
Delay Step Size/Resolution	<10 ps	Maximum difference in delay time between steps	
Delay Step Duration	<50 µs	Maximum allowable time spent at one delay. Derived assuming linear profile.	
Max Delay Step Transition TimeLess than 50% of the Delay Step Duration			
Maximum Frequency Shift	Approx. 100 MHz		
Number of Frequency Shifts	186		
Ramp Period	10 ms		
Ramp Duration	≤ Ramp Period		

Overall Block Diagram

Serrodyne Components

Serrodyne Design Approach

- Frequency shift created from linear phase modulation
 Frequency is the derivative of the phase with respect to time
- Spurs due to finite fall time of sawtooth phase modulation
 Use of intensity modulators with delay line to reduce spurs
- Free space vs. fiber optics

LASER

- OEwaves Sub-Hz Linewidth Semiconductor Laser
 - Provided by sponsor
- C-band (1530-1565 nm) laser source
- Popular fiber optic communications wavelength range
 - Low fiber losses

Manufacturer	OEwaves
Wavelength Range	1530-1565nm
Spectral Linewidth	1 Hz
Output Power	10 mW

Signal Intensity Modulator

- Eospace intensity modulator will be provided by sponsor
- Lithium Niobate crystal modulates light via voltage bias
 - Refractive index is altered, changing the optical path length
 - Using this effect with a Mach-Zehnder interferometer allows for intensity modulation
- Radio Frequency signal is used to modulate the laser with information

Manufacturer	Eospace
Operating Wavelength	1550 nm
Optical Connectors	FC/PC standard
Insertion Loss	<4-5 dB
Modulation Port Vpi	<4-5 volts

Phase Modulator

- Thorlabs Low Vpi Phase Modulator will be used
- Monolithic crystal adjusts optical phase via electric bias
- Low drive voltage
- Thorlabs recommended by sponsor
 - Relatively low price

LN53S-FC

Manufacturer	Thorlabs
Operating Wavelength Range	1525 - 1605 nm
Insertion Loss	~3 dB
Electro-Optic Bandwidth	~10Ghz

Signal Detection

- Optical down-conversion allows for detection of microwave frequency
- Frequency difference (or beat frequency) is observed
- Detected signal viewed using spectrum analyzer

Spur Reduction Intensity Modulators

- Thorlabs intensity modulators will be used
 - Less expensive than high data rate modulators
- Biased using square wave voltage
- Act as accurate interferometric switches
- Blocks signal during "reset" time

LN82S-FC

Manufacturer	Thorlabs
Operating Wavelength Range	1525 - 1605 nm
Insertion Loss	~3 dB
Electro-Optic Bandwidth	~10Ghz

Fiber Delay

- Signal is split
 - Routed to intensity modulators
- Optical fiber line introduced to add delay to one wing
- Provides the appropriate delay to allow for spur reduction
 - The delay added is equal to the "reset" time of the serrodyne sawtooth waveform

Electronic Components

Circuit Design

Circuit Design - 50MHz Oscillator

Circuit Design - Buffer

Circuit Design - 50MHz Square Waveform

Circuit Design - 50MHz Triangle Waveform

Circuit Design - Triangle and Square Inversion

Expected Outputs

PCB Layout

- In the process
- Footprints are created
- Trace width of 10 mil
- Trace spacing > 2 mil
- Two layer PCB with ground plane
- SMT parts

Microcontroller

- MSP-EXP430G2
- Controls output switches for selecting inversion stage and voltage dividers
- Familiar with this model

Manufacturer	Texas Instruments
Manufacturer Part #	MSP-EXP430G2
Unit Price	\$10.37
GPIO	10
CLK SPEED (Max as packaged)	16 MHz
Dimensions	67 x 50 (mm)

Digital Potentiometer (Digipot)

- Resistor ladder used to scale voltage ramp
- Programmable by MSP430
- Two needed to create voltage divider

Manufacturer	Microchip Technology
Manufacturer Part #	MCP4018T-503E/LT
Unit Price	\$0.53
Number of Resistors	128
Total Resistance	50 k-Ohm
Bandwidth	260 kHz
Dimensions	2.1 x 2.0 (mm)

Operational Amplifier

<u>Used for:</u>

Buffer

Amplifier/Triangle wave generator Inversion

<u>Main requirements</u>: High Frequency

<u>Choice</u>: AD8045

Manufacturer	Analog Devices Inc.
Manufacturer Part #	AD8045ACPZ-REEL7
Unit Price	\$3.85
Bandwidth	1 GHz

Comparator

Used for:

Square waveforms generation from sinusoid

<u>Main requirements</u>: High Frequency

<u>Part</u>: LT1715

Manufacturer	Linear Technology / Analog Devices
Manufacturer Part #	LT1715CMS#TRPBF
Unit Price	\$8.04
Toggle Frequency	150 MHz

Not a primary concern

Laser only requires a wall plug

Electronics use relatively low power and low current

Battery Selection

Electronics only use DC Batteries (Non-rechargeable):

50 MHz Oscillator (6V)

Two (2) for Power Rails for OpAmps and Comparator (12V)

Comparator Reference Voltage (3.6V)

Comparator Supply Voltage (3V)

Offset (1.5V, 3V)

Work Distribution

	Marcus	Kevin	Sam	Caleb
Serrodyne Frequency Shift			S	Р
Frequency Spur Reduction			Р	S
Circuit Design	Ρ	S		
PCB Layout	S	Р		
Software Design	S	Ρ		

P: Primary S: Secondary

Budget & Financing

- Necessary parts require a budget of \$9000
- The sponsor has agreed to supply these funds and more if the need arises
- Some equipment, such as the LASER, will be provided by the sponsor
- Additional test components will be paid for by the team (~\$200)

Initial Oscillator Testing

Progress

Percent Complete

High Frequency Electronics

Precision and Accuracy of components

Obtaining parts through Sponsor

Citations

- 1. <u>http://www.oewaves.com/narrow-linewidth-laser/subhertz</u>
- 2. <u>http://www.eospace.com/</u>
- 3. <u>https://www.thorlabs.com/thorproduct.cfm?partnumber=LN53S-FC</u>
- 4. S. Ozharar, F. Quinlan, S. Gee, and P. Delfyett, "Demonstration of endless phase modulation for arbitrary waveform generation," IEEE Photonics Technology Letters, vol. 17, no. 12, pp. 2739–2741, 2005.
- 5. <u>https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3918</u>
- 6.